树的遍历
本文最后更新于:40 分钟前
树
树存储结构
树的结点
结点:使用树结构存储的每一个数据元素都被称为“结点”。
父结点(双亲结点)、子结点和兄弟结点:有相同的父结点,所以互为兄弟结点。
树根结点(简称“根结点”):每一个非空树都有且只有一个被称为根的结点。
树根的判断依据为:如果一个结点没有父结点,那么这个结点就是整棵树的根结点。
叶子结点:如果结点没有任何子结点,那么此结点称为叶子结点(叶结点)。
子树和空树
子树:如图 1(A)中,整棵树的根结点为结点 A,而如果单看结点 B、E、F、K、L 组成的部分来说,也是棵树,而且节点 B 为这棵树的根结点。所以称 B、E、F、K、L 这几个结点组成的树为整棵树的子树;同样,结点 E、K、L 构成的也是一棵子树,根结点为 E。
注意:单个结点也是一棵树,只不过根结点就是它本身。
知道了子树的概念后,树也可以这样定义:树是由根结点和若干棵子树构成的。
空树:如果集合本身为空,那么构成的树就被称为空树。空树中没有结点。
补充:在树结构中,对于具有同一个根结点的各个子树,相互之间不能有交集。如果有,就破坏了树的结构,不能算做是一棵树。
结点的度和层次
对于一个结点,拥有的子树数(结点有多少分支)称为结点的度(Degree)。例如,图 1(A)中,根结点 A 下分出了 3 个子树,所以,结点 A 的度为 3。
一棵树的度是树内各结点的度的最大值。图 1(A)表示的树中,各个结点的度的最大值为 3,所以,整棵树的度的值是 3。
结点的层次:从一棵树的树根开始,树根所在层为第一层,根的孩子结点所在的层为第二层,依次类推。对于图 1(A)来说,A 结点在第一层,B、C、D 为第二层,E、F、G、H、I、J 在第三层,K、L、M 在第四层。
一棵树的深度(高度)是树中结点所在的最大的层次。图 1(A)树的深度为 4。
如果两个结点的父结点虽不相同,但是它们的父结点处在同一层次上,那么这两个结点互为堂兄弟。例如,图 1(A)中,结点 G 和 E、F、H、I、J 的父结点都在第二层,所以之间为堂兄弟的关系。
有序树和无序树
如果树中结点的子树从左到右看,谁在左边,谁在右边,是有规定的,这棵树称为有序树;反之称为无序树。
在有序树中,一个结点最左边的子树称为”第一个孩子”,最右边的称为”最后一个孩子”。
拿图 1(A)来说,如果是其本身是一棵有序树,则以结点 B 为根结点的子树为整棵树的第一个孩子,以结点 D 为根结点的子树为整棵树的最后一个孩子。
森林
由 m(m >= 0)个互不相交的树组成的集合被称为森林。图 1(A)中,分别以 B、C、D 为根结点的三棵子树就可以称为森林。
前面讲到,树可以理解为是由根结点和若干子树构成的,而这若干子树本身是一个森林,所以,树还可以理解为是由根结点和森林组成的。用一个式子表示为:
Tree =(root,F)
其中,root 表示树的根结点,F 表示由 m(m >= 0)棵树组成的森林。
树的表示方法
除了图 1(A)表示树的方法外,还有其他表示方法:
(A) (B)
图2 树的表示形式
图 2(A)是以嵌套的集合的形式表示的(集合之间绝不能相交,即图中任意两个圈不能相交)。
图 2(B)使用的是凹入表示法(了解即可),表示方式是:最长条为根结点,相同长度的表示在同一层次。例如 B、C、D 长度相同,都为 A 的子结点,E 和 F 长度相同,为 B 的子结点,K 和 L 长度相同,为 E 的子结点,依此类推。
最常用的表示方法是使用广义表的方式。图 1(A)用广义表表示为:
(A , ( B ( E ( K , L ) , F ) , C ( G ) , D ( H ( M ) , I , J ) ) )
二叉树及其性质
满足以下两个条件的树就是二叉树:
本身是有序树;
树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2;
二叉树的性质
经过前人的总结,二叉树具有以下几个性质:
二叉树中,第 i 层最多有 2i-1 个结点。
如果二叉树的深度为 K,那么此二叉树最多有 2K-1 个结点。
二叉树中,终端结点数(叶子结点数)为 n0,度为 2 的结点数为 n2,则 n0=n2+1。
性质 3 的计算方法为:对于一个二叉树来说,除了度为 0 的叶子结点和度为 2 的结点,剩下的就是度为 1 的结点(设为 n1),那么总结点 n=n0+n1+n2。
同时,对于每一个结点来说都是由其父结点分支表示的,假设树中分枝数为 B,那么总结点数 n=B+1。而分枝数是可以通过 n1 和 n2 表示的,即 B=n1+2n2。所以,n 用另外一种方式表示为 n=n1+2n2+1。
两种方式得到的 n 值组成一个方程组,就可以得出 n0=n2+1。
二叉树还可以继续分类,衍生出满二叉树和完全二叉树。
满二叉树
如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。
满二叉树示意图
图 2 满二叉树示意图
如图 2 所示就是一棵满二叉树。
满二叉树除了满足普通二叉树的性质,还具有以下性质:
满二叉树中第 i 层的节点数为 2n-1 个。
深度为 k 的满二叉树必有 2k-1 个节点 ,叶子数为 2k-1。
满二叉树中不存在度为 1 的节点,每一个分支点中都两棵深度相同的子树,且叶子节点都在最底层。
具有 n 个节点的满二叉树的深度为 log2(n+1)。
完全二叉树
如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。
完全二叉树示意图
图 3 完全二叉树示意图
如图 3a) 所示是一棵完全二叉树,图 3b) 由于最后一层的节点没有按照从左向右分布,因此只能算作是普通的二叉树。
完全二叉树除了具有普通二叉树的性质,它自身也具有一些独特的性质,比如说,n 个结点的完全二叉树的深度为 ⌊log2n⌋+1。
⌊log2n⌋ 表示取小于 log2n 的最大整数。例如,⌊log24⌋ = 2,而 ⌊log25⌋ 结果也是 2。
对于任意一个完全二叉树来说,如果将含有的结点按照层次从左到右依次标号(如图 3a)),对于任意一个结点 i ,完全二叉树还有以下几个结论成立:
当 i>1 时,父亲结点为结点 [i/2] 。(i=1 时,表示的是根结点,无父亲结点)
如果 2*i>n(总结点的个数) ,则结点 i 肯定没有左孩子(为叶子结点);否则其左孩子是结点 2i 。
如果 2*i+1>n ,则结点 i 肯定没有右孩子;否则右孩子是结点 2i+1 。
二叉树的顺序存储结构
二叉树的顺序存储,指的是使用顺序表(数组)存储二叉树。需要注意的是,顺序存储只适用于完全二叉树。换句话说,只有完全二叉树才可以使用顺序表存储。因此,如果我们想顺序存储普通二叉树,需要提前将普通二叉树转化为完全二叉树。
完全二叉树的顺序存储,仅需从根节点开始,按照层次依次将树中节点存储到数组即可。
二叉树的链式存储结构
采用链式存储二叉树时,其节点结构由 3 部分构成(如图 3 所示):
指向左孩子节点的指针(Lchild);
节点存储的数据(data);
指向右孩子节点的指针(Rchild);
表示该节点结构的代码为:
1 |
|
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!